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- Abstract

This paper shows how tight bounds for the range of a bivariate polynomial can be found using a matrix method based on

affine arithmetic. Then, this method is applied to drawing an algebraic curve with a hierarchical algorithm, which demonstrates that more

accurate answers can be obtained more rapidly than using conventional interval arithmetic.
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Solving f(z, y) =0 in a rectangular area [z, T ]
X [y, %] is a problem with many practical applica-
tions in CAD and computer graphics. One such exam-
ple is drawing algebraic curves; other applications in-
clude surface-surface intersection and computation of
the silhouette curve of a parametric surface!'!.

Let C be an algebraic curve defined implicitly by
the equation f(z,y) =0, where f(x, y) is a poly-
nomial in two variables. A simple and general tech-
nique for computing an approximation of C on a rect-
angular region Q as described in Ref. [2] is: (i) de-
compose  into small cells; (ii) identify which cells
intersect C; (iii) approximate C within each inter-
secting cell. Typically, the cellular decomposition of
Q is a regular grid of rectangles, so identifying the in-
tersecting cells is usually the most expensive step in
this method. In the simplest schema, the cells that
intersect C are identified by point sampling of each
cell. However, this method may cause aliasing and is

extremely inefficient.

(3] sample the curve only in

Continuation methods
the immediate neighbourhocod of known intersecting
cells, so they are generally more efficient. However,
these methods have one fundamental difficulty besides
aliasing; finding a complete set of initial seed cells in-

tersecting every connected component of C in .

[4,5]

Hierarchical decomposition methods rely on

range analysis[s] to explore ) recursively in order to
discard large portions of  quickly and reliably. The
classical technique of interval arithmetic (1a)t" pro-
vides a natural tool for range analysis. However, the
main weakness of A is that it tends to be too conser-
vative. To solve this problem, Comba!®! proposed a
new model for numerical computation, called affine

arithmetic (AA).

Like IA, AA can be used to manipulate impre-
cise values and to evaluate functions over intervals. It
can also keep track of truncation and round-off er-
rors. In contrast to IA, AA also maintains dependen-
cies among the sources of error arising from common
variables in different subexpressions, and thus man-
ages to compute significantly tighter error bounds.
AA has been used as a replacement for IA in various
computer graphical applications, such as ray tracing,
intersection testing, enumeration of implicit curves
and surfaces, and sampling for
shaders'® 871%), However, Comba’s simplified for-
mula for affine form multiplication given in Ref. [8]
is still conservative. Its range estimate may be four
times wider than the exact range. This is not desir-
able, especially in a chain of calculations needed to e-

procedural

valuate a polynomial. A new more efficient AA tech-
nique for polynomial evaluation was proposed in a pre-
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vious paper[“], but it failed to give correct results in
certain circumstances.

Thus, this paper proposes a novel matrix formu-
lation using AA for polynomial evaluation, which is
mathematically correct and produces better estimation
of the range of a bivariate polynomial over a box, be-
cause the affine form thus computed is exact. A com-
parison of the performance and efficiency between IA
and matrix AA versions applied to the algebraic curve
drawing algorithms is then performed with selected
examples.

1 Affine arithmetic bivariate polynomial
evaluation in matrix form

In this section we give a novel matrix formula-
tion for bivariate polynomial evaluation using affine
arithmetic.

Let
flz,y) = D) Dlaa'y = XAY,

i=0 j=0
(z,y) €[z, z] x [, 7],
where
X=,z,,z"), Y=(1Ly,,y)", Aj=a;.
Let us express the intervals [z, Z] and [y, ] in
affine form:
T =zxot xiE, Y= Yot yie,,

where €, and e, are noise symbols whose values are
unknown but each is assumed to be in the range
[-1,1], and

xo=(Z+x2)/2, z1=(Z-2)/2,

yo=(F+2)/2, vy =(3-23)2
Now define power vectors in the error symbols:

X =Q0,e,,¢€), Y= (l,ey,"',s;")T.

We now define two further matrices B and C as fol-
lows. Let

(1 zo ! xy

0 x4 (n - 1)18—211 nxg—l.rl
B=l: : ° . . ’

o o - 27! nzox; |

0 0 0 z
where

and let

1 0 0 0
Yo kg1 0 0
c=| : : '
ol (m =Dy Py - S0
Yo myg 'y o omyeyy Tt MY
where
0, i<j
Cy =314 i-j ; C i
v j Yo 3/1’ iz= J

i=0,1,,m, j =0,1,,m.
Now, if we compute D from matrices B and C, and
the original coefficient matrix A as follows:
D = BAC,
we get
f(-%a&) = XDY = 20 Z;D,}-eiei,.
i=0 j=
This is the exact affine form which we now wish
to convert back to interval form [ F, F]. The conver-
sion procedure takes the following form: if 7 is even

and j is also even, then e;ei,é [0,1]; otherwise eiei,
€[ -1,1]. So we find that:

— ” [max(0, Dy;), if j is even
F=D00+Z lDojl, /

j=1
" [(max(0, D;y), if i is even}
>
; [ DiO Iy
max(0, D;;), if ¢, j are both even}
| Dy 1, ’

otherwise

otherwise
n m

+

=15-1 otherwise

and
F = Dy + Z’": max(0, Dy;), if j is even}
i=1 =1 DOj Iy
. i {max(O,D,—o), if 7 is e'ven
= =1 Dyl, otherwise
N Z": m {maX(O,D,-j), if 7, j are both even}.
i=1 =1 Dzj [
The bivariate polynomial f(x, y) thus takes on val-
ues guaranteed to be in the interval [ F, F] over the

box [z, z]x[y,7].

otherwise

= otherwise

2 Method and algorithm

We now outline further the hierarchical curve
drawing algorithm used in our examples. The basic
strategy as presented in Ref. [11] to draw an alge-
braic curve f(z,y) =0 in a given rectangular interval
is that we evaluate f(x, y) over the desired interval
using IA or AA, starting with the whole interval. If
the resulting interval does not contain 0, no curve is
present. If it does contain 0, we subdivide the inter-
val horizontally and vertically at its mid point, and
consider the pieces in turn. The process stops when
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an interval consisting of a single pixel is left. In such
a case we fill the pixel. This may result in a “fat”
curve if the test is too conservative. In detail, we use
the following procedure:

PROCEDURE Quadtree(z,z, y,7):
F = IA or AA Evaluation{z,%,y,5);
if F<KO(F then
if z —2<1 AND 5 — y<1 then
PlotPixel(Round((z + £ )/2), Round((y+%)/2))
else Subdivide(z, Z, y, 7).

PROCEDURE Subdivide(z, 7, y, ¥):
r= Round((z +x)/2);
§=Rouncl((1+§)/2);
Quadtree(g,;,_y,;);
Quadtree(g,;,§+1,§);
Quadtree(x% + 1, %, ; +1,%);
Quadtree(F + 1, 7, _y,;).

Here F = IA or AA Evaluation(z, T, v, ¥) is the
conservative interval containing all values of f(x,y)
over [z,Z ] X[y, 5] computed using IA or AA. The

. v v . .
pair (z, y) denotes the mid-point of [z, Z] X [y,
5]
3 Examples

We now illustrate through two examples that
affine arithmetic in matrix form usually not only gives
much better graphical results but also is more efficient
than interval arithmetic. Each example consists in
plotting a function f(x, y) =0 using the above algo-
rithm on a grid of 256 X256 pixels.

The first example, which is from Ref. [12], is
shown in Fig. 1(a) and (b), and is a plot of the
curve 0.945zy —9.43214x%y% + 7. 455423y + y* -
z>=0on [0,1] X [0, 1] using interval arithmetic
and affine arithmetic in matrix form respectively.

1.0 1.0
@ \ { (b) u
0.8 0.8

0.6 0.6
0.4 0.4
0.2 0.2

0 02 04 06 08 10 0 02 04 06 08 10

Fig.1. Drawing curve 0.945zy — 9.43214z%y%+ 7.4554x%y% +
y* = 23=0. (a) Using 1A; (b) using AA.

The second example from Ref. [11] is shown in
Fig. 2(a) and (b), and is a plot of 20160x° -
301762 + 141562 ~ 23442% + 151z + 237 — 480y
=0o0n [0,1] %X [0, 1] using interval arithmetic and

affine arithmetic in matrix form respectively.
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Fig.2. Drawing curve 201605 — 30176 r* + 14156 > ~ 2344 22
+151x +237-480y=0. (a) Using IA; (b) using AA.

To compare the performance and efficiency of
our affine arithmetic matrix form bivariate polynomial
evaluator against the direct use of interval arithmetic,
a number of quantities were measured in both cases
(CPU times themselves are not given, as a C lan-
guage implementation would have been much quicker
than the Mathematica implementation we used for

testing) :

(i) The percentage of the overall area definitely
classified as not containing the curve: the bigger the

better.

(ii) The number of subdivisions needed: the
lower the better, because of overheads incurred in re-

cursion.

(iii) The number of additions (and subtrac-
tions), and multiplications needed: the lower the bet-

ter.

Tables 1 and 2 give the details of these quantities
for both test cases.

As can be clearly seen from these figures and ta-
bles, the affine arithmetic in matrix form gives much
better results than the interval arithmetic in terms of
the area correctly classified, the number of subdivi-
sions, and the number of operations needed. These
results are usually true for various other examples we

tested.
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Table 1. Comparison between AA and IA methods for the
first example

Method Area classified Subdivisions  Additions MUI_UPI-
(%) ications

AA 99.0723 634 1355919 870189
1A 93.8568 3909 1493798 1876438

Table 2. Comparison between AA and IA methods for the
second example

@ ifi Multipl-

Method Area classified Subdivisions  Additions R .tlp
(%) ications
AA 99.3393 459 667642 510684
1A 73.0225 11458 3485276 4308300

4 Conclusions

Usually affine arithmetic is more complex than
interval arithmetic, hence is harder to implement be-
cause of the need to keep track of the various sources
of error. It might be supposed that affine arithmetic
would need more operations during curve drawing.
However, the examples show that this is not general-
ly the case because many fewer rectangular regions
need to be considered. Due to the tighter intervals it
produces, the affine arithmetic method usually not
only yields much better graphical results than the in-
terval arithmetic method, but also is more efficient in
the number of arithmetic operations required because
fewer subdivisions are needed. Expressing the affine
operations using matrix forms raises the affine opera-
tions to a higher level of abstraction. The small cost
to pay for these AA improvements is the addition of

extra storage.
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